导航
登录 English
陈俊帆
点赞:
陈俊帆
点赞:
论文
,陈俊帆,张日崇, Jie Xu,胡春明, Yongyi Mao.A Neural Expectation-Maximization Framework for Noisy Multi-Label Text Classification:IEEE Transactions on Knowledge and Data Engineering (TKDE), CCF-A,2023:10992-11003 ,陈俊帆,张日崇, Yongyi Mao, Jie Xu.ContrastNet: A Contrastive Learning Framework for Few-Shot Text Classification:Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI), CCF-A,2022:10492-10500 ,陈俊帆,张日崇, Xiaohan Jiang,胡春明.SPContrastNet: A Self-Paced Contrastive Learning Model for Few-Shot Text Classification:ACM Transactions on Information Systems (TOIS), CCF-A,2024:130:1-130:25 ,陈俊帆,张日崇, Zheyan Luo,胡春明, Yongyi Mao.Adversarial Word Dilution as Text Data Augmentation in Low-Resource Regime:Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI), CCF-A,2023:12626-12634 ,陈俊帆,张日崇, Junchi Chen,胡春明, Yongyi Mao.Open-Set Semi-Supervised Text Classification with Latent Outlier Softening:Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), CCF-A,2023:226-236 ,陈俊帆,张日崇, Junchi Chen,胡春明.Open-Set Semi-Supervised Text Classification via Adversarial Disagreement Maximization:Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (ACL), CCF-A,2024:2170-2180 ,陈俊帆,张日崇, Jiarui Wang,胡春明, Yongyi Mao.Self-Paced Pairwise Representation Learning for Semi-Supervised Text Classification:Proceedings of the ACM on Web Conference 2024 (WWW), CCF-A,2024:4352-4361 ,陈俊帆,张日崇, Yaowei Zheng, Qianben Chen,胡春明, Yongyi Mao.DualCL: Principled Supervised Contrastive Learning as Mutual Information Maximization for Text Classification:Proceedings of the ACM on Web Conference 2024 (WWW), CCF-A,2024:4362-4371 ,陈俊帆,张日崇, Yongyi Mao, Jie Xu.Parallel Interactive Networks for Multi-Domain Dialogue State Generation:Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), CCF-A,2020:1921--1931 ,陈俊帆,张日崇, Yongyi Mao, Jie Xu.Neural Dialogue State Tracking with Temporally Expressive Networks:Findings of the Association for Computational Linguistics: EMNLP 2020 (EMNLP Findings),2020:1570--1579
共35条  1/4 
首页上页  
加载更多